## 如何評閱醫學文獻 (How to Critically Appraising Evidence)

(EBM基礎課程for PGY1)

光田醫院大甲分院 家庭醫學科 賴文恩 醫師

## 實証醫學(Evidence Based Medicine)



An updated model for evidence based clinical decisions'

Haynes RB, Deveaux PJ, Guyatt GH. BMJ 2002; 324, 7350

## Five Steps to Practice EBM

- ► Step 1 asking a question
- Step 2 searching for the best evidence
- Step 3 critically appraising
- Step 4 applying
- Step 5 evaluating

## Five Types of Question

- Diagnosing and screening
- ▶ Therapy
- ► Harm/etiology
- Prognosis
- Guidelines



### Clinical Scenario

- ▶ 張先生,48歲男性,由於 被告知 C型肝炎帶原 [anti-HCV(+)]。 醫師建議以後, 應每半年追蹤 肝臟超音波/胎兒蛋白 檢查
- ► 結果,第一次追蹤就發現,雖然 肝臟超音波正常,但AFP高達45.6ng/mL
- ▶ 他再來門診時,醫師說...

98年5月7日

### The Effectiveness of Serum <u>a-Fetoprotein</u> Level in Anti-HCV Positive Patients for Screening Hepatocellular Carcinoma

Yen-Chun Peng Chi-Sen Chan

Gran-Hum Chen

Ho

Division of Gastroenterology, Department of Internal Medicine,

Taichung Veterans General

Hospital, Taichung, Taiwan

Corresponding Author:

Chi-Sen Chang, MD

Division of Gastroenterology Department of Internal Medicine

Taichung Veterans General

Hospital

160, Sec 3, Chung-Kang Rd

Taichung 407

Taiwan

Tel: +886-4-3741331

Fax: +886-4-3741318

KEY WORDS: a-fetoprotein; HCV; Hepatoceilular carcinoma

ABBREVIATIONS: Hepatitis B Virus (HBV); Hepatitis C Virus (HCV);

Hepatocellular Carcinoma (HCC)

#### ABSTRACT

BACKGROUND/AIMS: In Taiwan, most cases of hepatocellular carcinoma (HCC) are hepatitis B virus (HBV) or hepatitis C virus (HCV) related. The serum α-fetoprotein (AFP) level is an important factor in the diagnosis of HCC. There have been many studies discussing the role of AFP in diagnosing HBV-related HCC, but only few concerning HCV-related HCC. In this study, we aimed at analyzing the distribution of AFP levels in anti-HCV positive patients with and without HCC and evaluating the effectiveness of serum AFP levels in screening HCV-related HCC.

METHODOLOGY: From 1993-1996, we collected the AFP data of 205 HCC patients retrospectively, who were anti-HCV positive For comparison, 131 randomized anti-HCV positive patients without evidence of HCC served as the control group. We analyzed the AFP distribution in both groups over the following ranges: ≤5ng/ml, >5-20ng/ml, >20-50ng/ml, >50-100ng/ml, >100-200ng/ml and >200-400ng/ml, and >400ng/ml

**RESULTS:** The distributions of AFP levels in anti-HCV positive patients with HCC were 13.2%, 21.5%, 11.2%, 4.9%, 4.4%, 7.3%, and 37.6%. The distributions in anti-HCV positive patients without evidence of HCC were 34.3%, 55.0%, 8.4%, 1.5%, 0.8%, 0%, 0%.

**CONCLUSIONS:** We found the differences in AFP to be statistically significant between anti-HCV positive patients with and without HCC. A serum AFP level of more than 200ng/ml highly indicates HCC However, there is a large overlap between these 2 groups. Thus, in anti-HCV positive patients, AFP level is not a good single reference for diagnosis of HCC. Anti-HCV positive patients should be routinely screened for HCC by image studies along with serum AFP level.

#### METHODOLOGY

Between January 1993 and December 1996, 205 HCC patients (167 males, 38 females) with anti-HCV positive and negative for hepatitis B surface antigen (HBsAg) in our hospital were enrolled into this study. The age ranged from 35-85 years (mean: 65 0±8.9 years). HCC was diagnosed by ultrasonography or CT scan findings. Definite diagnosis was made by liver biopsy or a specific vascular lesion by highly selective celiac angiography. The AFP levels of these patients at the time of definite diagnosis of HCC were recorded For comparison, 131 patients with anti-HCV positive and HBsAg negative, without HCC, were randomly selected. During the period of follow-up, AFP and abdominal ultrasonography were performed, every 3-6 months, to screen for HCC. Liver CT scan or hepatic angiography was ordered for patients with suspicious liver lesions on ultrasonography. If HCC was proven, patients were transferred to the HCC group.



### Critically Appraising Diagnostic test (VIP)

► (<u>V</u>alid)

Evidence about a diagnostic test valid?

(Important)

How important the evidence is?

Accuracy of the test to distinguish p'ts with or without disorder

(aPply)

Can I apply this valid, accurate test to a specific patient?

### Evidence about a Diagnostic Test Valid?

- An independent, blind comparison with golden standard of diagnosis?
  - Pt undergone both test in question & reference standard.
  - Results should be blinded to personnel of the other side
  - Avoid the conscious and unconscious bias (over-interpreted, or under-interpreted)
- Reference standard universally applied
  - when the reference standard is invasive or risky, sufficiently prolonged follow-up is OK
- Evaluated in an <u>appropriate spectrum</u> of <u>patients</u> (like those we would use it in practice)?
- ► Validated in a 2<sup>nd</sup>, independent groups of patients

98年5月7日

## How important the Evidence Is?

- Accuracy of Diagnostic test
  - Sensitivity / Specificity
  - Positive predictive value (PPV)/ Negative predictive value (NPV)
  - Likelihood Ratio + / Likelihood Ratio -

#### 例:某次乳癌社區篩檢 5000 位婦女,事後經 黃金標準 檢驗 發現,

真正有病的 100 位,有 80 位檢測陽性,沒病的 4900 位中也有 200 位陽性:

|          | 有病 Pr(D+) | 無病 Pr(D-) |         |        | D(+) | D(-) |      |
|----------|-----------|-----------|---------|--------|------|------|------|
| Test (+) | a         | ь         | a + b   | T(+)   | 80   | 200  | 280  |
| Test (−) | С         | d         | c + d   | ·>T(-) | 20   | 4700 | 4720 |
|          | a + c     | b + d     | a+b+c+d |        | 100  | 4900 | 5000 |

- Sensitivity = a/(a+c) = 80/100 = 0.8
- $\triangleright$  Specificity = d/(b+d) = 4700/4900 = 0.96
- Positive predictive value

$$= a/(a+b) = 80/280 = 0.286$$

Negative predictive value

$$= d/(c+d) = 4700/4720 = 0.996$$

Prevalence

$$= (a+c)/(a+b+c+d) = 100/5000 = 0.02$$

98年5月7日

如何評閱醫學文獻

|      | 有病 Pr(D+)            | 無病 Pr(I | )-)            |              |                | D(+)  | D(-) |       |
|------|----------------------|---------|----------------|--------------|----------------|-------|------|-------|
| Test | (+) a                | b       | a + b          | Т            | (+)            | 80    | 200  | 280   |
| Test | (-) c                | d       | c + d          | ->7          | Γ(-)           | 20    | 4700 | 4720  |
|      | a + c                | b + d   | a+b+c+d        |              |                | 100   | 4900 | 5000  |
| T    | Pr(D+)               |         | Pr(D-)         |              |                | D(+)  | D(-) |       |
| T+   | a/(a+b+c+d)          |         | +b+c+d)        |              | T(+)           | 0.016 | 0.04 | 0.056 |
| T -  | c/(a+b+c+d)          | d/(a    | +b+c+d)        | ->           | >T( <b>-</b> ) | 0.004 | 0.94 | 0.944 |
|      | (a+c)/(a+b+c+d)      | (b+d)/  | (a+b+c+d)      |              |                | 0.02  | 0.98 | 1     |
|      | $Pr(D^+)$            |         | Pr(            | D-)          |                |       |      |       |
| T+   | a/(a+c) x (a+c)/(a+  | +b+c+d) | b/(b+d) x (b+  | d)/(a+b+c+c  | 1)             |       |      |       |
| T -  | c/(a+c) x (a+c)/ (a- | +b+c+d) | d/(b+d) x (b+d | 1)/ (a+b+c+c | d)             |       |      |       |
|      | (a+c)/(a+b+c+        | ⊦d)     | (b+d)/(a-      | +b+c+d)      |                |       |      |       |
|      | $Pr(D^+)$            |         | Pr(            | D-)          |                |       |      |       |
| T+   | Sen x Prev           | 7       | (1-Spe) x      | (1-Prev)     |                |       |      |       |
| T -  | (1-Sen) x Pro        | ev      | Spe x (        | l-Prev)      |                |       |      |       |
| ,    | Prev                 | '       | (1-P           | rev)         |                |       |      |       |

## SpPin and SnNout

#### ► SpPin

Extremely <u>high</u> (Sp)ecificity,
 a (P)ositive result tends to <u>Rule</u> (in) the diagnosis.

|     | $Pr(D^+)$      | Pr(D-)   |  |  |
|-----|----------------|----------|--|--|
| T+  | Sen x Prev     | ~0       |  |  |
| T - | (1-Sen) x Prev | 1-Prev   |  |  |
|     | Prev           | (1-Prev) |  |  |

#### ► SnNout

Extremely <u>high (Sen)sitivity</u>,
 a (N)egative result tends to rule (out) the diagnosis.

|     | $Pr(D^+)$ | Pr(D-)             |
|-----|-----------|--------------------|
| T+  | Prev      | (1-Spe) x (1-Prev) |
| T - | ~0        | Spe x (1-Prev)     |
|     | Prev      | (1-Prev)           |

|           | 有病 Pr(D+)           | 無病 Pr(I                                                        | )-)            |               | D(+)  | D(-) |       |
|-----------|---------------------|----------------------------------------------------------------|----------------|---------------|-------|------|-------|
| Test (    | +) a                | ь                                                              | a + b          | T(+)          | 80    | 200  | 280   |
| Test (    | -) c                | d                                                              | c + d          | >T(-)         | 20    | 4700 | 4720  |
|           | a + c               | b + d                                                          | a+b+c+d        |               | 100   | 4900 | 5000  |
| -         | $Pr(D^+)$           | F                                                              | Pr(D-)         |               | D(+)  | D(-) |       |
| T+        | a/(a+b+c+d)         |                                                                | +b+c+d)        | T(+)          | 0.016 | 0.04 | 0.056 |
| T - [     | c/(a+b+c+d)         | d/(a                                                           | +b+c+d)        | ->T(-)        | 0.004 | 0.94 | 0.944 |
|           | (a+c)/(a+b+c+d)     | (b+d)/                                                         | (a+b+c+d)      | 7 - ( )       | 0.02  | 0.98 | 1     |
|           | $Pr(D^+)$           |                                                                | Pr()           | D-)           |       |      |       |
| T+        | a/(a+c) x (a+c)/(a- | +b+c+d)                                                        | b/(b+d) x (b+c | d)/(a+b+c+d)  |       |      |       |
| T -       | c/(a+c) x (a+c)/ (a | +b+c+d)                                                        | d/(b+d) x (b+d | l)/ (a+b+c+d) |       |      |       |
|           | (a+c)/(a+b+c        | ,                                                              | (b+d)/(a-      | +b+c+d)       |       |      |       |
|           | $Pr(D^+)$           | Pr(D                                                           | )              |               |       |      |       |
| T+<br>T - | prev x(1-sen)       | (1-prev)x(<br>(1-prev)x<br>(1-prev)x<br>(1-prev)x<br>(1-prev)x | spe            |               |       |      |       |

#假設對某一種檢查而言, Sen, Spe 為固定,

其 PPV & NPV 將隨 Pr(D)而有很大的不同。

例如:某一種檢查 sensitivity = 0.85, specificity = 0.9

|     | $Pr(D^+)$           | Pr(D-)      | In population A with $[Pr(D) = 0.1\%]$ :                                                            |
|-----|---------------------|-------------|-----------------------------------------------------------------------------------------------------|
| T+  | 0.001 x 0.85        | 0.999 x 0.1 | $PPV = \frac{0.001 \times 0.85}{0.001 \times 0.000} = 0.84\%$                                       |
| T - | $0.001 \times 0.15$ | 0.999 x 0.9 | $\frac{10.001 \times 0.85 + 0.999 \times 0.1}{0.001 \times 0.85 + 0.999 \times 0.1} = -0.84\%$      |
|     | 0.001               | 0.999       | $NPV = \frac{0.999 \times 0.9}{0.001 \times 15 \times 0.000} = 99.98\%$                             |
|     | 0.001               | 0.333       | $NPV = \frac{0.001 \times 0.15 + 0.999 \times 0.9}{0.001 \times 0.15 + 0.999 \times 0.9} = 99.98\%$ |

如果有一個檢查的 Sen = 0.95, Spe = 0.95, 那麼盛行率對陽性預測値與陰性預測値的影響如下:

| 7            |        |       |        |        |        |        |        |        |        |        |        |        |        |        |        |
|--------------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Prevalence   | 99%    | 95%   | 90%    | 80%    | 70%    | 60%    | 50%    | 40%    | 30%    | 20%    | 10%    | 5%     | 1%     | 0.5%   | 0.1%   |
| Prior Pr(D)  | 2270   | 2370  | 2070   | 0070   | 7070   | 0070   | 3070   | 4070   | 3070   | 2070   | 1070   | 370    | 170    | 0.570  | 0.170  |
| PPV=         | 00.00/ | 99.7% | 00 40/ | 09 704 | 07.80/ | 06 60/ | 05.00/ | 02.794 | 20.10/ | 92 604 | 67.004 | 50.00/ | 16 10/ | 9 704  | 1.00/- |
| Post-Pr(D +) | 99.9%  | 99.7% | 99.4%  | 90.770 | 97.0%  | 90.0%  | 93.0%  | 92.7%  | 09.170 | 02.0%0 | 07.9%  | 30.0%  | 10.1%  | 0.7%   | 1.9%   |
| NPV          | 16 104 | 50.0% | 67 00% | 82 604 | 20 10/ | 02.794 | 05.09/ | 06 694 | 07 894 | 08 794 | 00 494 | 00.794 | l      |        | 99.99  |
| INF V        | 10.176 | 30.0% | 07.970 | 02.070 | 09.170 | 92.770 | 95.070 | 90.070 | 97.070 | 90.770 | 99.470 | 99.770 | 99.970 | %      | %      |
| 1-NPV=       | 92.00/ | 50.0% | 22 104 | 17 404 | 10.00/ | 7.204  | 5.00/  | 2.404  | 2.204  | 1 204  | 0.60/  | 0.204  | 0.10/  | 0.030/ | 0.010/ |
| Post-Pr(D -) | 03.9%  | 30.0% | 32.1%  | 17.4%0 | 10.9%  | 7.3%   | 3.0%   | 3.4%0  | 2.2%   | 1.5%   | 0.0%   | 0.3%   | 0.1%   | 0.03%  | 0.01%  |



#### 判讀檢查結果,應考慮「盛行率 (事前機率)」

如果判讀檢查結果時,沒有考慮 Pr(D)=Prev.,可能導致誤差。

#### 例一:

- 1) 在山地鄉,Chronic cough patient with CXR(+),T.B.可能性較大;
- 2) 在都市, Chronic cough patient with CXR(+), T.B.可能性較小;
- 3) 在美國, Chronic cough patient with CXR(+), T.B.可能性更小。

#### 例二:

如果最近報載,東海校園發現 Dengue Fever,那麼,兩位症狀完全相同,抽血檢驗也都+的病人,醫師向病人解釋患病的可能性時,仍然受到與東海地緣關係的影響。

#### 例三:

Lower back pain 症狀完全一模一樣的 patient, 出現在家醫科門診與 免疫風濕科門診的疾病可能性 Pr(D) 不同, Test 的判讀也不同。

因此, Pr(D)也可叫<u>事前機率</u>;而 Pr(D|+)或 Pr(D|-)叫做<u>事後機率</u>。 意即:檢查後,依檢查結果,將得病的**機率**, Revise 成為事後機率。

$$PPV=a/(a+b) = \frac{Prev \times sen}{Prev \times sen + (1-Prev)(1-spe)} = \frac{Pr(D) \times sen}{Pr(D) \times sen + (1-Pr(D))(1-spe)}$$

$$NPV=d/(c+d) = \frac{(1-Prev) \times spe}{Prev \times (1-sen) + (1-Prev) \times spe} = \frac{(1-Pr(D)) \times spe}{Pr(D) \times (1-sen) + (1-Pr(D)) \times spe}$$

#### 以勝算(odds)爲基礎的計算

然而,前式太複雜,不易理解應用。我們改用 Odds 的概念來取代 Pr(D),會得到一個比較簡潔的公式

$$Odds = \frac{f病的機率}{2病的機率} = \frac{Pr(D)}{1-Pr(D)}$$

$$Pre\text{-}Odds = Pr(D^+)/(1\text{-}Pr(D^-)) = prev/(1\text{-}prev)$$

$$\frac{\text{Likelihood Ratio of "+"}}{(\text{LR}_{+})} = \frac{\text{Sensitivity}}{1 - \text{Specificity}}$$

$$\frac{\text{Likelihood Ratio of "-"}}{(\text{LR}_{-})} = \frac{\text{1- Sensitivity}}{\text{Specificity}}$$

$$\begin{array}{c} \text{Post-Odds}_{\text{T+}} = \frac{\text{prev} \quad \text{x} \quad \text{sen}}{(1\text{-prev}) \quad \text{x} \quad (1\text{-spe})} \\ = \quad \text{Pre-odds} \quad \text{x} \quad LR_{+} \\ \\ \text{Post-Odds}_{\text{T-}} = \frac{\text{prev} \quad \text{x} \quad (1\text{-sen})}{(1\text{-prev}) \quad \text{x} \quad \text{spe}} \end{array}$$

Pre-odds x LR.

Posterior odds = 
$$LR_+ x Pre-odds$$
 if  $Test (+)$ 

Posterior odds = 
$$LR \cdot x \text{ Pre-odds}$$
 if  $\underline{\text{Test}}(-)$ 

# Real time usage of Diagnostic test with EXCEL®



### Multi-level Likelihood Ratio

| Table 3.8 | The usefulness of | five levels of | f a diagnostic test result |
|-----------|-------------------|----------------|----------------------------|
|-----------|-------------------|----------------|----------------------------|

| Diagnostic          | Serum<br>ferritin | Target disorder<br>(Iron deficiency) present |               | Target disorder absent |                 | Likelihood | Diagnostic        |
|---------------------|-------------------|----------------------------------------------|---------------|------------------------|-----------------|------------|-------------------|
| test result         | (mmol/L)          | Number                                       | %             | Number                 | %               | ratio      | impact            |
| Very positive       | < 15              | 474                                          | 59 (474/809)  | 20                     | 1.1 (20/1770)   | 52         | Rule-in "SpPin"   |
| Moderately positive | 15-34             | 175                                          | 22 (175/809)  | 79                     | 4.5 (79/1770)   | 4.8        | Intermediate high |
| Neutral             | 35-64             | 82                                           | 10 (82/809)   | 171                    | 10 (171/1770)   | 1          | Indeterminate     |
| Moderately negative | 65-94             | 30                                           | 3.7 (30/809)  | 168                    | 9.5 (168/1770)  | 0.39       | Intermediate low  |
| Extremely negative  | ≥ 95              | 48                                           | 5.9 (48/809)  | 1332                   | 75 (1332/1770)  | 0.08       | Rule-out "SnNout" |
|                     |                   | 809                                          | 100 (809/809) | 1770                   | 100 (1770/1770) |            | 11152             |

### Multi-level Likelihood Ratio

|    | D+    | D-    | Likelyhood Ratio (LR) |
|----|-------|-------|-----------------------|
| T+ | SEN   | 1-SPE | = SEN / 1-SPE         |
| T- | 1-SEN | SPE   | = 1-SEN / SPE         |
|    | 1     | 1     | •                     |

| ferritin | Iron Deficiency(+) | Iron Deficiency(-) | Likelyhood Ratio (LR)   |
|----------|--------------------|--------------------|-------------------------|
| <15      | 58.6%              | 1.1%               | = 0.586 / 0.011 = 51.85 |
| 15~34    | 21.6%              | 4.5%               | = 0.216 / 0.045 = 4.85  |
| 35~64    | 10.1%              | 9.7%               | = 0.101 / 0.097 = 1.05  |
| 65~94    | 3.7%               | 9.5%               | = 0.037 / 0.095 = 0.39  |
| >95      | 5.9%               | 75.3%              | = 0.059 / 0.753 = 0.08  |
|          | 1                  | 1                  | -                       |

Post-Test Odds = Pre-Test Odds \* LR

```
Odds = Pr(D) / Pr(D-)
= Pr(D) / (1-Pr(D))
Pre-Test Odds

* LR = Post-Test Odds

Pre-Test Pr(D) Pre-Test Odds

* LR Post-Test Odds Post-Test Pr(D)
```

| Pre-Test Pr(D) | Pre-Test Odds | LR          | Post-Test Odds     | Post-Test Pr(D)      |
|----------------|---------------|-------------|--------------------|----------------------|
| <u>0.100</u>   | 0.1/0.9=0.111 | <u>4.85</u> | 0.111*4.85 = 0.538 | 0.538/(0.538+1)=0.35 |

 $1/10 \rightarrow 1/9 \times 4.85 = 4.85/9 \rightarrow 4.85/13.85 = 0.35$ 

(=5/14 = 0.357)

## Likelihood Ratio of common test or signs or symptoms



Anemia\*

| Finding (Ref)†                       | Sensitivity (%) | Specificity (%) | Likelihood Ratio<br>if Finding |            |  |
|--------------------------------------|-----------------|-----------------|--------------------------------|------------|--|
|                                      |                 |                 | Present                        | Absent     |  |
| Pallor at any site <sup>3-5</sup>    | 38-77           | 66-92           | 4.1                            | 0.4        |  |
| Facial pallor <sup>4</sup>           | 46              | 88              | 3.8                            | 0.6        |  |
| Nail bed pallor <sup>4,5</sup>       | 59-60           | 66-93           | NS                             | 0.5        |  |
| Palmar pallor <sup>4,5</sup>         | 58-64           | 74–96           | 5.6                            | 0.4        |  |
| Palmar crease pallor <sup>4</sup>    | 8               | 99              | 7.9                            | NS         |  |
| Conjunctival pallor4-7               | 31-62           | 82-97           | 4.7                            | 0.6        |  |
| Conjunctival rim pallor <sup>2</sup> | duiseU HL 200   | Asht (Crums)/   | A. Reidolid,                   | G amilen P |  |
| Pallor present                       | 10              | 99              | 16.7                           | market m   |  |
| Pallor borderline                    | 36              | A military 15 h | 2.3                            | F III      |  |
| Pallor absent                        | 53              | 16              | 0.6                            | 111        |  |

NS, not significant; likelihood ratio (LR) if finding present = positive LR; LR if finding absent = negative LR.

Definition of findings: For pallor at any site, examination of skin, nailbeds, and conjunctiva<sup>3-5</sup>; for facial pallor, the study excluded black patients; for palmar crease pallor, examination after gentle extension of the patient's fingers; for conjunctival rim pallor, see text.







<sup>\*</sup>Diagnostic standard: For anemia, hematocrit <35%,4 hemoglobin <11 g/dL,2-5-7 or hemoglobin <11 g/dL in women and <13 g/dL in men.3

# Likelihood Ratio of common test or signs or symptoms



Findings Predicting Hepatocellular Jaundice in Patients with Jaundice\*

| Finding (Ref)†                           | Sensitivity (%) | Specificity (%) | Likelihood Ratio<br>if Finding |               |  |
|------------------------------------------|-----------------|-----------------|--------------------------------|---------------|--|
| uriomas (LIC = 47                        | ط موسالي        | I gancertatur   | Present                        | Absent        |  |
| General appearance                       | Migronese       | do Allinando    | Total                          | ) Eirlieville |  |
| Weight loss <sup>31,33</sup>             | 10-49           | 21-97           | NS                             | NS            |  |
| Skin                                     | 19 /            |                 |                                |               |  |
| Spider angiomata <sup>31,33</sup>        | 35-47           | 88-97           | 4.7                            | 0.6           |  |
| Palmar erythema <sup>31</sup>            | 49              | 95              | 9.8                            | 0.5           |  |
| Dilated abdominal<br>veins <sup>31</sup> | 42              | 98              | 17.5                           | 0.6           |  |
| Abdomen                                  |                 |                 | - CONTROL                      | militar       |  |
| Ascites <sup>31</sup>                    | 44              | 90              | 4.4                            | 0.6           |  |
| Palpable spleen <sup>31,33</sup>         | 29-47           | 83-90           | 2.9                            | 0.7           |  |
| Palpable gallbladder <sup>31</sup>       | 0†              | 69              | 0.04                           | 1.4           |  |
| Palpable liver <sup>31,33</sup>          | 71-83           | 15-17           | NS                             | NS            |  |
| Liver tenderness31,33                    | 37-38           | 70-78           | NS                             | NS            |  |

NS, not significant; likelihood ratio (LR) if finding present = positive LR; LR if finding absent = negative LR.

<sup>†</sup>None of the 41 patients with medical jaundice in this study had a palpable gallbladder; for calculation of the LRs, 0.5 was added to all cells of the  $2 \times 2$  table.



+15% +30% +45%

Palpable spleen

Dilated abdominal veins

Palmar erythema Spider angiomata

45% -30% -15%

Palpable gallbladder

0.5



<sup>\*</sup>Diagnostic standard: For nonobstructive (vs. obstructive) jaundice, needle biopsy of liver, surgical exploration, or autopsy.

#### E. RENAL COLIC

In one study of 1333 patients presenting with acute abdominal pain, two findings were accurate signs of ureterolithiasis (as diagnosed by imaging or follow-up): loin tenderness (sensitivity 15%, specificity 99%, positive LR = 27.7, negative LR = 0.9) and renal tenderness (sensitivity 86%, specificity 76%, positive LR = 3.6, negative LR = 0.2). As compelling as these findings are, they are less important than the finding of microscopic hematuria, which has a sensitivity of 75%, specificity of 99%, positive LR of 73.1, and negative LR of 0.3.71

98年5月7日

如何評閱醫學文廳

27

## Likelihood Ratio of common test or signs or symptoms

Box 48-1

Acute Abdominal Pain, Signs Detecting Peritonitis\*

| Finding (Ref) <sup>†</sup>                                  | Sensitivity (%) | Specificity (%) | Likelihood<br>Ratio if Finding |        |  |
|-------------------------------------------------------------|-----------------|-----------------|--------------------------------|--------|--|
|                                                             |                 | :               | Present                        | Absent |  |
| Abdominal examination                                       |                 |                 |                                |        |  |
| Guarding <sup>2,26–33</sup>                                 | 13-76           | 56-97           | 2.6                            | 0.6    |  |
| Rigidity <sup>2,30-32,34</sup>                              | 6–40            | 86-100          | 3.9                            | NS     |  |
| Rebound tenderness <sup>2,26–40</sup>                       | 40-95           | 20-89           | 2.1                            | 0.5    |  |
| Percussion tenderness <sup>33</sup>                         | 65              | 73              | 2.4                            | 0.5    |  |
| Abnormal bowel sounds <sup>2,32</sup>                       | 25-61           | 44-95           | NS                             | 0.8    |  |
| Rectal examination                                          |                 |                 |                                |        |  |
| Rectal tenderness <sup>2,29,30,32,33,35,36,41</sup>         | 20-53           | 41–96           | NS                             | NS     |  |
| Other tests                                                 |                 |                 |                                |        |  |
| Positive abdominal wall<br>tenderness test <sup>16,42</sup> | 1–5             | 32-72           | 0.1                            | NS     |  |
| Positive cough test <sup>14,26,34,40</sup>                  | 73-84           | 44-79           | 1.8                            | 0.4    |  |

NS, not significant; likelihood ratio (LR) if finding present = positive LR; LR if finding absent = negative LR.

Box 48-2 Acute Right Lower Quadrant Tenderness, Signs Detecting Appendicitis\*

| Finding (Ref) <sup>†</sup>                                 | Sensitivity (%) | Specificity (%) | Likelihood<br>Ratio If Finding |        |  |
|------------------------------------------------------------|-----------------|-----------------|--------------------------------|--------|--|
| n.                                                         |                 |                 | Present                        | Absent |  |
| Vital signs                                                |                 |                 |                                |        |  |
| Fever <sup>26,36,39,44</sup>                               | 47-81           | 40-70           | 1.5                            | 0.6    |  |
| Abdominal examination                                      |                 |                 |                                |        |  |
| Severe right lower quadrant<br>tenderness <sup>26,27</sup> | 87–99           | 8–65            | NS                             | 0.2    |  |
| McBurney's point<br>tenderness <sup>26,27,45</sup>         | 50-94           | 75–86           | 3.4                            | 0.4    |  |
| Rovsing's sign <sup>27,28,31,41</sup>                      | 22-68           | 58-96           | 2.5                            | 0.7    |  |
| Rectal examination                                         |                 |                 |                                |        |  |
| Rectal tenderness <sup>29,30,33,35,36,41</sup>             | 38–53           | 41-62           | NS                             | NS     |  |
| Other signs                                                |                 |                 |                                |        |  |
| Psoas sign <sup>28,29,33</sup>                             | 13-42           | 79-97           | 2.0                            | NS     |  |
| Obturator sign <sup>29</sup>                               | 8               | 94              | NS                             | NS     |  |

NS, not significant; likelihood ratio (LR) if finding present = positive LR; LR if finding absent = negative LR.

<sup>†</sup>Definition of findings: For fever, temperature >  $37.3^{\circ}$  C<sup>36,39,44</sup> or not defined<sup>26</sup>; for positive cough test, see EBM Box 48-1.

<sup>\*</sup>Diagnostic standard: For peritonitis, surgical exploration and follow-up of patients not operated on; causes of peritonitis included appendicitis (most common), cholecystitis, and perforated ulcer. One study also included patients with pancreatitis.<sup>32</sup>

<sup>&</sup>lt;sup>†</sup>Definition of findings: For abnormal bowel sounds, absent, diminished, or hyperactive; for abdominal wall tenderness test, see text; for positive cough test, the patient is asked to cough, and during the cough shows signs of pain or clearly reduces the intensity of the cough to avoid pain. <sup>26</sup>

<sup>\*</sup>Diagnostic standard: For appendicitis, surgical findings, histology, and follow-up of patients not operated on.

#### 重覆接受不同的檢查,即反覆 Revise 得病機率至 acceptable 的地步。



**FIGURE 3.13** Use of likelihood ratios in serial testing. As each test is completed, its posttest odds become the pretest odds for the subsequent test.

### TABLE 2 The Distribution of AFP in Both Groups

 $HCC (+), n=205 \qquad HCC (-), n=131$ 

| AFP ≤5ng/ml                                                                 | 27 (13 2%) | 45 (34.3%) |
|-----------------------------------------------------------------------------|------------|------------|
| 5 <afp≤20ng ml<="" td=""><td>44 (21 5%)</td><td>45 (34.3%)</td></afp≤20ng>  | 44 (21 5%) | 45 (34.3%) |
| 20 <afp≤50ng ml<="" td=""><td>23 (11.2%)</td><td>1.1 (8.4%)</td></afp≤50ng> | 23 (11.2%) | 1.1 (8.4%) |
| $50 < AFP \le 100 \text{ng/ml}$                                             | 10 (4 9%)  | 2 (5.2%)   |
| 100 <afp≤200ng ml<="" td=""><td>9 (4.4%)</td><td>1 (0.8%)</td></afp≤200ng>  | 9 (4.4%)   | 1 (0.8%)   |
| 200 <afp≤400ng ml<="" td=""><td>15(7.3%)</td><td>0</td></afp≤400ng>         | 15(7.3%)   | 0          |
| AFP>400ng/ml                                                                | 77 (37 6%) | 0          |

HCC (+): anti-HCV positive patients with evidence of HCC; HCC (-): anti-HCV positive patients without evidence of HCC; AFP: a-fetoprotein; n: patient number

|             |       |                                                                                                          |                | HCC    | (+), n=         | 205         | I      | HCC (-), n=131          |
|-------------|-------|----------------------------------------------------------------------------------------------------------|----------------|--------|-----------------|-------------|--------|-------------------------|
|             | ΑF    | P ≤5ng/ml                                                                                                |                | 27     | 7 (13 2%)       | )           |        | 45 (34.3%)              |
| ;           | 5<    | AFP≤20ng                                                                                                 | /ml            | 44     | (21.5%)         | }           |        | 45 (34.3%)              |
|             |       | <afp≤50n< td=""><td>•</td><td>28</td><td>3 (11.2%)</td><td>}</td><td></td><td>1.1 (8.4%)</td></afp≤50n<> | •              | 28     | 3 (11.2%)       | }           |        | 1.1 (8.4%)              |
|             |       | <afp≤100< td=""><td>-</td><td></td><td>0 (4 9%)</td><td>•</td><td></td><td>2 (5.2%)</td></afp≤100<>      | -              |        | 0 (4 9%)        | •           |        | 2 (5.2%)                |
|             |       |                                                                                                          | . <del>-</del> |        |                 |             |        | 1                       |
|             | 100   | ) <afp≤20< td=""><td>Ong/ml</td><td>ç</td><td>(4.4%)</td><td></td><td></td><td>1 (0.8%)</td></afp≤20<>   | Ong/ml         | ç      | (4.4%)          |             |        | 1 (0.8%)                |
|             | 200   | ) <afp≤40< td=""><td>Qng/ml</td><td>1</td><td>5(7.3%)</td><td></td><td></td><td>0</td></afp≤40<>         | Qng/ml         | 1      | 5(7.3%)         |             |        | 0                       |
|             |       | P>400ng/a                                                                                                |                |        | 7 (37 6%)       | ì           |        | 0                       |
| i           | Α     | В                                                                                                        | С              | D      | E               | F           | G      | - н і                   |
| 1           |       | _                                                                                                        | <u>-</u>       | _      | _               | -           |        |                         |
| 2           |       | anti HCV (+)                                                                                             | HCC(+)         | HCC(-) | Likelihood R    | atio (LR)   | -      |                         |
| 3           |       | AFP ≦ 5                                                                                                  | 0.132          | 0.343  | 0.132 / 0.343 : | = 0.385     | _      |                         |
| <u> </u>    |       | 5 < AFP≦ 20                                                                                              | 0.215          | 0.55   | 0.215 / 0.55 :  | = 0.391     | _      |                         |
| 5_          |       | 20 < AFP≦ 50                                                                                             | 0.112          | 0.084  | 0.112 / 0.084 : | = 1.333     | _      |                         |
| _           |       | 50 < AFP≦ 100                                                                                            | 0.049          | 0.015  | 0.049 / 0.015 : | = 3.267     | _      |                         |
| _           |       | 100 < AFP≦ 200                                                                                           | 0.044          | 0.008  | 0.044 / 0.008 : | = 5.500     | _      |                         |
| 3           |       | 200 < AFP≦ 400                                                                                           | 0.073          | 0      | 0.073 / 0 :     | = 00        | _      |                         |
|             |       | 400 < AFP                                                                                                | 0.376          | 0      | 0.376 / 0 :     | = 00        | _      |                         |
| 0<br>1<br>2 |       | Odds = Pr(D) / Pr<br>= Pr(D) / (1                                                                        |                |        |                 |             |        | Pr(D) = Odds/(1+Odds)   |
| .3          | ı     |                                                                                                          | Pre-Test Odds  | *      | LR =            | Post-Test ( |        |                         |
|             |       | Pre-Test Pr(D)                                                                                           | Pre-Test Odds  |        | LR              | Post-Tes    | t Odds | Post-Test Pr(D)         |
| L4<br>L5    | Test1 | 0.020                                                                                                    | 0.02/0.98=0.02 |        | 1.333           | 0.02        |        | 0.027/(0.027+1) = 0.026 |

## Can I apply this test to a specific patient?

► Is the diagnostic test <u>available</u>, affordable, accurate, and precise in <u>our setting</u>?

Can we generate a clinical sensible <u>estimate</u> of our patients <u>pre-test</u> <u>probability</u>?

Will the resulting <u>post-test</u> <u>probabilities</u> <u>affect</u> our <u>management</u> and help our patient?

## Generate a clinical sensible estimate of our patient's pre-test probability

► From clinical <u>experience</u>, prevalence <u>statistics</u>, <u>practice databases</u>, <u>this report</u>, or <u>other studies</u> designed for pretest Probability.

Are the study pa

Is it unlikely that probabilities have was gathered?

TABLE 2. Pretest Likelihood of CAD in Symptomatic Patients According to Age and Sex\*

|        | Nonanginal Chest<br>Pain |       | Atypic | cal Angina | Typical Angina |       |
|--------|--------------------------|-------|--------|------------|----------------|-------|
| Age, y | Men                      | Women | Men    | Women      | Men            | Women |
| 30-39  | 4                        | 2     | 34     | 12         | 76             | 26    |
| 40-49  | 13                       | 3     | 51     | 22         | 87             | 55    |
| 50-59  | 20                       | 7     | 65     | 31         | 93             | 73    |
| 60-69  | 27                       | 14    | 72     | 51         | 94             | 86    |

<sup>\*</sup>Each value represents percent with significant CAD on catheterization.

Data from (1) Diamond GA, Forester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. *N Engl J Med.* 1979;300:1350–1358. (2) Chaitman BR, Bourassa MG, Davis K, Rogers WJ, Tyras DH, Berger R, Kennedy JW, Fisher L, Judkins MP, Mock MB, Killip T. Angiographic prevalence of high-risk coronary artery disease in patient subsets (CASS). *Circulation*. 1981;64:360–367.

## Generate a clinical sensible estimate of our patient's pre-test probability

► From clinical <u>experience</u>, prevalence <u>statistics</u>, <u>practice databases</u>, <u>this report</u>, or <u>other studies</u> designed for pretest Probability.

- Are the study patients similar to our own?
- Is it unlikely that the disease possibilities or probabilities have changed since this evidence was gathered?

## Will the Resulting Post-test Probabilities Affect Our Management and Help Our Patient?

► Could it move us <u>across</u> a <u>test-treatment</u> <u>threshold</u>?

Would our <u>patient</u> be a <u>w</u>

Would the consequences patient reach his or her g



98年5月7日

如何評閱

## Will the Resulting Post-test Probabilities Affect Our Management and Help Our Patient?

► Could it move us <u>across</u> a <u>test-treatment</u> <u>threshold</u>?

► Would our patient be a willing partner in test?

Would the consequences of the test <u>help</u> our patient <u>reach</u> his or her <u>goals</u> of <u>therapy</u>?



## Critically Appraising Treatment article (VIP)

- ► <u>V</u>alidity
  - Is it valid? (closeness to the truth)
- Important
  - Is it important? (size of effect)
- ► A<u>P</u>ply
  - Is it <u>applicable</u> to the (specific) patient?
     (clinical applicability)

# Types of Study

- Randomized controlled Trials
- Cohort Studies
- Case Control Studies
- Case reports and case series
- Systematic reviews
  - Meta-analysis: combining many studies into one

. . . . . .

## 證據的分級

N of 1 RCT

全盤性文獻回顧 Systematic review 綜合分析Meta-analysis 前瞻式隨機分派控制型試驗 RCT 前瞻式非隨機分派控制型試驗 前瞻式世代型研究 Cohort 病例控制世代型研究 Case control 横斷式調查分析 Cross-sectional 病例(系列)報告Case reports

Thsystemic observation of individual clinician

### 楔子 - 問題思考

#### 例 1:王老先生與 aspirin-

王老先生罹患高血壓服藥 10 年。

近5年來,醫師加上 <u>aspirin100mg</u> 1#qd。

上個月,王老先生因 腦出血 送醫院急救無效,二天後 逝世。

事後省思,要是醫師後來沒有加上 aspirin,就不會發生 腦出血 事件?

#### 例 2: 多吃鈣片可以長高…

小明 <u>10 歳</u>的時候,有 <u>150cm</u>高,由於媽媽<u>每天</u>叫他<u>吃鈣片</u>, <u>18 歳</u>時長到 <u>185cm</u>。所以,多吃鈣片可以長高?

此兩個案例對 **因果關係** 的 推論,有何問題?

在科學上(醫學上),如何 証實 A 事件 與 B 事件 的 因果關係?

答案: 一最少要有 對照個案 的 比較

#### 對照個案 的 比較

#### 例 1: 王老先生與李老先生…

| 王老先 | 生 | 同鄉,住隔壁…<br>相同年齡,相同豐餘。 | 有使用 aspirin  | 發生 腦出血  |
|-----|---|-----------------------|--------------|---------|
| 李老先 | 生 | 相同年齡、相同體態、相同生活習慣與環境   | 沒有使用 aspirin | 未發生 腦出血 |

是否可以用 aspirin 藥物之使用與否,來解釋腦出血的事件?

#### 例 2: 多吃鈣片,可以長高?

| 小明 | 住隔壁兩個 10 歲小孩:<br>相同年齡、讀同一班、 | 每天吃鈣片  | 18 歲時 185cm |
|----|-----------------------------|--------|-------------|
| 小華 | 1                           | 從來不吃鈣片 | 18 歲時 162cm |

#### 對照個案 比較 的 兩個問題:

- 在現實(生物)世界中,充滿許多未知的影響因素, 導致隨機變異 (random variation)(或隨機誤差)處處可見,例:
  - 1) 同樣每天吃鈣片,長成的身高,有高有矮;
  - 2) 再怎樣細心,同一管血在不同時候測得的血糖,多少還是有變異。

在醫學研究中,如何克服隨機變異的問題?

答:增加**樣本數 (重覆測量**),不以**單一個案**來**比較**, 而是以**樣本平均值 (點估計值)**來**比較**,以**除去**隨機誤差。

2. 兩組個案,不見得可以完全相比擬…。

可比較性(comparability)不足 = 存在干擾因素 (confounding factors) 何謂 干擾因素?

實驗組與對照組之間,有某些不同之因素, 這些因素與結果變項(疾病)相關,而可解釋「所觀察的現象」例如

1. 調查社區健康情形:**運動量**多的居民,心**臟病**的比例高。Why?

對照組的選取:著眼在「可比較性」

歷史重演 (Counter-factual)

解决「**可比較性」**的問題,最好的辦法是「**歷史重演**—**自己和自己比」**,但是,**違逆事實,不可能發生**...

由於歷史無法重演,只好用其他的方法,獲得還算可信 (可比較) 的對照組: 實驗操控 vs. 自然變異



### 動物實驗 (animal experiment)



#### 操控實驗有興趣的變項,有三個特點:

- 1. 對照組的比較(Control group comparison),盡可能維持兩組相同的處置。
- 2. **隨機分派** Randomization process 的過程

隨機將 受試個體 分派 至實驗組/對照組,使 可能有而未知 之個別差異,盡可能平均分配,使實驗具「可比較性」(減少干擾因素);

盲目程序 Blinded procedure

對結果進行**測量者**,不知道**隨機分派**中,**受試者**所分到的**組別**。 **避免** 在**測量**結果時,受到 **主觀成見** 的 **影響**。

#### 臨床試驗 (randomized double blinded clinical trial)

在**動物實驗**中,我們已經**盡可能**地**控制實驗前後的影響(干擾)因素,** 所以可能影響結果的因素不多。因此,實驗樣本的數目不必太多。

但在有關人的**臨床試驗**中,有很多無法操控的變項(干擾因素),包括:**受試個體特質** / 環境 / 時間等。

例如:無法強迫一家人都參與實驗、不能把人關在籠子、控制食物的量 與種類、控制每天的運動量…

只得增加實驗受試者的數目,並仔細地隨機分派, 使得已知/未知的干擾因素,盡可能地平均分配,減少干擾可能。

如此,實驗組與對照組之間,得以具備「可比較性」。



|                            | 有病    | 沒病        | 發病危險性     |
|----------------------------|-------|-----------|-----------|
| 實驗組 (Exposure) / n=500     | 15    | 485       | 0.03 = 3% |
| 對照組 (Non-Exposure) / n=500 | 5     | 495       | 0.01 = 1% |
| Relative risk              | (R.R) | 0.03/0.01 | = 3.0     |

困難: 花錢、花時間, 在日常生活中, 病患很難配合, 也緩不濟急…

 $\neg$ 

#### 觀察性研究 (observational study)

1. 世代追蹤研究 (Cohort study)



例如:經調查發現,某社區 50~59 歲女性族群共 3978 人,其中 1789 人服用停經女性荷爾蒙,另 2189 人沒人服用。追蹤 10 年後,發生乳癌之病例,前者有 15 人,後者有 5 人。發生乳癌的比率,似乎比較高。

| Cohort population 3978 人 | 有病 | 沒病   | 發病比率    |
|--------------------------|----|------|---------|
| Exposure 1789 人          | 15 | 1774 | = 0.84% |
| Non-Exposure 2189 人      | 5  | 2184 | = 0.23% |

#### 2. 病例對照研究 (Case control study)



關心:勝算比 odds ratio(OR) = (a/b) / (c/d) = ad/<u>bc</u> (危險對比值)

**例如:** 假設某醫院**新生嬰兒**流行**某疾病**,懷疑與**母親**懷孕時**飲食/用藥**有關...

我們收集一整年,發現有20個有病的新生嬰兒...

|                 |      |          | _       |                      |           | _     |
|-----------------|------|----------|---------|----------------------|-----------|-------|
|                 | 有病   | 全族群      | 沒病      | 全族群                  | 發病比率      | 勝算 =  |
|                 | 20人  | N        | 20人     | N                    | = 20 / N  | 有病/沒病 |
| Exposure        | 15   | NE       | 8人      | N <sub>E</sub> =8X   | = 15 / 8X | 1.875 |
| Non-Exposure    | 5    | $N_{NE}$ | 12人     | N <sub>NE</sub> =12X | = 5 / 12X | 0.417 |
| Relative risk   | (P.E |          | 15 / 8X | 15/8                 | - = 4.50  | 勝算比   |
| IXCIALIVE I ISK | (R.F | /        | 5 / 12X | 5/12                 | 4.50      | = 4.5 |

用在罕見的疾病、快速地找出可能的病因(網漁流行病學) 假設比較多,因果關係不能肯定。多需要更進一步研究証實。 對照組的選取:著眼在「可比較性」

歷史重演 (Counter-factual)

解决「**可比較性」**的問題,最好的辦法是「**歷史重演**—**自己和自己比」**,但是,**違逆事實,不可能發生**...

由於歷史無法重演,只好用其他的方法,獲得還算可信 (可比較) 的對照組: 實驗操控 vs. 自然變異



#### 配對與交叉設計

思考:在某些情况下,我們可以讓歷史重演 (自己如何可能和自己比較?)

洗髮精 的 廣告

PST 試驗

腎高血壓 與 腎血管病變

降血壓藥物 與 血壓 之 臨床試驗



## Is this evidence about therapy valid?

(from Double blinded Randomized controlled Clinical Trial)

- Randomization of assignment of pts to different tx
- Blinded procedure:
  - Concealed the randomization in enrollment
  - Kept the pts, Drs, and study personnel blinded to tx grp
- Compatibility of treatment vs. control groups:
  - Were the groups similar at the start of the trial?
  - Were groups treated equally, apart from the experimental therapy?
  - Were <u>all patients</u> <u>analyzed</u> in the groups to which they were randomized? *(intention-to-treat analysis)*
- Sufficiently long and complete follow-up?

## Is this valid evidence about tx important?

What is the <u>magnitude</u> of the treatment effect?

► How <u>precise</u> is the estimate of the treatment effect?

98年5月7日 如何評閱醫學文獻 55

|                           | 總人數      | 發病危險性                                       |
|---------------------------|----------|---------------------------------------------|
| 實驗組 (Treatment)/ Ed       | TotalE   | Experimental Event Rate (EER) = Ed / TotalE |
| 對照組 (Control) / <u>Cd</u> | TotalC   | Control Event Rate (CER) = Cd / TotalC      |
| Relative Risk Reduction   | n(RRR) = | (CER-EER) / CER                             |
| Absolute risk reduction   | (ARR) =  | (CER-EER)                                   |
| Number needed to treat    | (NNT) =  | 1/ARR = 1/(CER-EER)                         |

| 組別(Group)/ 有病人數         | 總人數      | 發病危險性              | 虚擬研究結果                 |
|-------------------------|----------|--------------------|------------------------|
| 實驗組 (Treatment)/10      | 500      | 10/500 = 0.02 = 2% | 10/5000 = 0.002 = 0.2% |
| 對照組 (Control) / 15      | 500      | 15/500 = 0.03 = 3% | 15/5000 = 0.003 = 0.3% |
| Relative Risk Reduction | n(RRR) = | (3%-2%)/3% = 0.33  | (0.3%-0.2%)/0.3%=0.33  |
| Absolute risk reduction | (ARR) =  | (3%-2%) = 1%       | (0.3%-0.2%) = 0.1%     |
| Number needed to treat  | (NNT) =  | 1/1% = 100         | 1/0.1% = 1000          |
|                         |          |                    |                        |

Table 5.4 Some useful NNTsa

|                                                                    |                                                                            |                                                    | Event r | ate  | Follow-up |     |
|--------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------|---------|------|-----------|-----|
| Target disorder                                                    | Intervention                                                               | Events being prevented                             | CER     | EER  | time      | NNT |
| Diastolic blood pressure<br>115–129 mmHg <sup>b</sup>              | Antihypertensive drugs                                                     | Death, stroke, or MI                               | 13%     | 1.4% | 1.5 years | 8   |
| Diastolic blood pressure                                           | Antihypertensive drugs                                                     | Death, stroke or MI                                | 5.5%    | 4.7% | 5.5 years | 128 |
| Symptomatic high-grade carotid stenosis <sup>d</sup>               | Carotid endarterectomy (compared with medical therapy)                     | Death or major stroke                              | 18%     | 8%   | 2 years   | 10  |
| Mild-to-moderate<br>Alzheimer's dementia <sup>e</sup>              | Donepezil (vs. placebo)                                                    | No functional decline                              | 44%     | 59%  | 1 year    | 7   |
| Unstable angina <sup>f</sup>                                       | Invasive management within<br>7 days (compared with<br>medical management) | Death or MI                                        | 16%     | 12%  | 24 months | 24  |
| Renal insufficiency and undergoing coronary angiogram <sup>g</sup> | Oral acetylcysteine<br>(vs. placebo)                                       | Contrast media-induced reduction in renal function | 12%     | 4%   | 48 hours  | 12  |

<sup>&</sup>lt;sup>a</sup>See www.cebm.utoronto.ca for additional NNTs.

NNT<sub>hypothetical</sub> x time<sub>hypothetical</sub> = NNT<sub>observed</sub> x time<sub>observed</sub>

**NNT**<sub>hypothetical</sub>

= NNT<sub>observed</sub> x (time<sub>observed</sub>/time<sub>hypothetical</sub>)

 $= 128 \times (5.5 / 1.5) = 470$ 

bJAMA 1967: 202: 116-22. 'BMJ 1995; 291: 97-104.

dN Engl J Med 1991; 325: 445-53.

eNeurology 2001; 57: 613-20.

<sup>&</sup>lt;sup>f</sup>J Am Coll Cardiol 2002; 40: 1902-14.

<sup>9</sup>JAMA 2003; 289: 553-8.

| 組別(Group) / 有病人數          | 總人數    | 發病危險性                                       |
|---------------------------|--------|---------------------------------------------|
| 實驗組 (Treatment)/ Ed       | TotalE | Experimental Event Rate (EER) = Ed / TotalE |
| 對照組 (Control) / <u>Cd</u> | TotalC | Control Event Rate (CER) = Cd / TotalC      |
|                           |        |                                             |

Relative risk increased (RRI) = (EER-CER)/CER

Absolute risk increased(ARI) = (EER-CER)

Number needed to Harm(NNH) = 1/ARI = 1/(EER-CER)

| 組別(Group)/ 有病人數      | 總人數 | 發病危險性              |
|----------------------|-----|--------------------|
| 實驗組 (Treatment) / 15 | 500 | 15/500 = 0.03 = 3% |
| 對照組 (Control) / 10   | 500 | 10/500 = 0.02 = 2% |

Relative risk increased (RRI) = (3%-2%)/2% = 0.5

Absolute risk increased(ARI) = (3%-2%) = 1%

Number needed to Harm(NNH) = 1/1% = 100

### Is the evidence applicable to our patient?

- Is our <u>patient</u> so <u>different</u> from those in the study that its results cannot apply?
  - Fit all the inclusion criteria for the study / different sociodemographic features or pathobiology (pharmacogenetics, absent immune responses, ...)
- ▶ Is the treatment feasible in our setting?
  - available in our setting/ payed by?/ administration & required monitoring...
- What are our patient's potential benefits and harms from the therapy?
  - NNT =  $1/(PEER \times RRR)$  or  $NNT_{patient} = NNT_{study}/f_t$
  - NNH =  $1/(PEER \times RRI)$  or  $NNH_{patient} = NNH_{study}/f_h$
- What are our patient's <u>values</u> and <u>expectations</u> for both the outcome we are trying to prevent and the treatment we are offering?

| 組別(Group)/有病人數            | 總人數      | 發病危險性                                       |
|---------------------------|----------|---------------------------------------------|
| 實驗組 (Treatment)/ Ed       | TotalE   | Experimental Event Rate (EER) = Ed / TotalE |
| 對照組 (Control) / <u>Cd</u> | TotalC   | Control Event Rate (CER) = Cd / TotalC      |
| Relative Risk Reductio    | n(RRR) = | (CER-EER) / CER                             |
| Absolute risk reduction   | n(ARR) = | (CER-EER)                                   |
| Number needed to treat    | (TMM) =  | 1/ARR = 1/(CER-EER)                         |

NNT =  $1/ARR = 1/(CER-EER) = 1/(CER \times RRR)$ 

98年5月7日

如何評閱醫學文獻

| 組別(Group)/ 有病人數         | 總人數      | 發病危險性              | Your patient's condition                           |
|-------------------------|----------|--------------------|----------------------------------------------------|
| 實驗組 (Treatment) / 10    | 500      | 10/500 = 0.02 = 2% |                                                    |
| 對照組 (Control) / 15      | 500      | 15/500 = 0.03 = 3% | PEER= 0.003, $f_t$ =0.1                            |
| Relative Risk Reductio  | n(RRR)=  | (3%-2%)/3% = 0.33  | (0.3%-0.2%)/0.3%=0.33                              |
| Absolute risk reduction | ı(ARR) = | (3%-2%) = 1%       | (0.3%-0.2%) = 0.1%                                 |
| Number needed to treat  | (NNT) =  | 1/1% = 100         | $1/(0.003 \times 0.33) = 1000$<br>100 / 0.1 = 1000 |

- $\triangleright$  NNT = 1/ARR = 1/(CER-EER) = 1/(CER x RRR)
- $\triangleright$  NNT = 1/(PEER x RRR)

PEER: Patient's Expected Event Rate with control tx

 $\triangleright$  NNT<sub>patient</sub> = NNT<sub>study</sub>/ $f_t$ 

ft: Risk of the outcome in your patient, relative to pts in trial.

### The likelihood of being helped vs. harmed (LHH)

- $(1 / NNT) \times f_t \times S : (1/NNH) \times f_h$ 
  - $= ARR \times f_t \times S : ARI \times f_h$
  - f: Risk of the disease in your patient, relative to pts in trial.
  - fh: Risk of the side effect in your patient, relative to pts in trial.

S: severity factor, the relative severity of disease progression if no treatment to side effect if receiving treatment.

### The likelihood of being helped vs. harmed (LHH)

| 研究文獻 | 總人數 | 發病人數   | 發病危險                                                |  | 副作用人數  | 副作用危險   |  |
|------|-----|--------|-----------------------------------------------------|--|--------|---------|--|
| 實驗組  | 500 | 10     | 2.00%                                               |  | 15     | 3.00%   |  |
| 對照組  | 500 | 15     | 3.00%                                               |  | 10     | 2.00%   |  |
|      |     | PEER = | 9.00%                                               |  | PEER = | 0.66%   |  |
|      |     | ft =   | 3                                                   |  | fh =   | 0.33    |  |
|      |     | S =    | 2                                                   |  |        | 1       |  |
|      |     |        |                                                     |  |        |         |  |
|      |     | RRR =  | 0.33333                                             |  | RRI =  | 0.50000 |  |
|      |     | ARR =  | 0.01000                                             |  | ARI =  | 0.01000 |  |
|      |     | NNT =  | 100.000                                             |  | NNH =  | 100.000 |  |
|      |     |        |                                                     |  |        |         |  |
|      |     | LHH =  | $L_{HH} = ARR \times ft \times S : ARI \times fh =$ |  |        |         |  |

98年5月7日

如何評閱醫學文獻

### MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20 536 high-risk individuals: a randomised placebocontrolled trial

Heart Protection Study Collaborative Group\*

| 研究文獻 | 總人數   | 發病人數   | 發病危險       |                | 副作用人數             | 副作用危險    |
|------|-------|--------|------------|----------------|-------------------|----------|
| 實驗組  | 10269 | 442    | 4.30%      |                | 5                 | 0.05%    |
| 對照組  | 10267 | 585    | 5.70%      |                | 3                 | 0.03%    |
|      |       | PEER = | 17.09%     |                | PEER =            | 0.01%    |
|      |       | ft =   | 3          |                | fh =              | 0.33     |
|      |       | S =    | 19         |                |                   | 1        |
|      |       |        |            |                |                   |          |
|      |       | RRR =  | 0.24459    |                | RRI =             | 0.66634  |
|      |       | ARR =  | 0.01394    |                | ARI =             | 0.00019  |
|      |       | NNT =  | 71.754     |                | NNH =             | 5136.001 |
|      |       |        |            |                |                   |          |
|      |       | LHH =  | = ARR x fi | t x <b>S</b> : | $ARI \times fh =$ | 12363.45 |

## Is this valid evidence about tx important?

What is the <u>magnitude</u> of the treatment effect?

► How <u>precise</u> is the estimate of the treatment effect? (95% confidence interval)



